- For this specific unit of work, children will need squared paper for some activities.
- If you do not have access to squared paper, or are unable to print squared paper from the website, the children may need to miss the activities that require this resource.
- I have tried to incorporate activities that the children can complete without squared paper, but this has not been possible in all cases.

Perimeter, Area and Volume

Starter

If each of the small white squares represents $1 \mathrm{~cm}^{2}$, what's the same and what's different about the two rectangles shown below?

Explain your answer.

Starter - ANSWERS

Both rectangles are made of a total of twelve squares, so they have the same area, $12 \mathrm{~cm}^{2}$. They have different side lengths. The left-hand rectangle is 3 cm tall and 4 cm wide, whereas the right-hand rectangle is 2 cm tall and 6 cm wide.

Date: Day 1

LO: To investigate rectangles and rectilinear shapes with the same area.

Date: Day 1

LO: To investigate rectangles and

 rectilinear shapes with the same area.Success Criteria
I can $1 \mathrm{~cm}^{2}$ grids to help me investigate rectangles and rectilinear shapes with the same area.
I can explain my reasoning.

Descriptive Doing

Referring to the diagram provided, complete the sentences below:

The rectangle has a height of $_\mathrm{cm}$.

The rectangle has a width of _ cm.

The rectangle is made of __ small squares.

The rectangle has an area of $\quad \mathrm{cm}^{2}$.

Descriptive Doing - ANSWERS

The rectangle has a height of 2 cm .
The rectangle has a width of 4 cm .
The rectangle is made of 8 small squares.
The rectangle has an area of $8 \mathrm{~cm}^{2}$.

Descriptive Doing

You don't need to write the sentences, just say them out loud!
Referring to the diagram provided, complete the sentences below:

The rectangle has a height of $_\mathrm{cm}$.
The rectangle has a width of _ cm.
The rectangle is made of __ small squares.

The rectangle has an area of $\ldots \mathrm{cm}^{2}$.

Descriptive Doing - ANSWERS

Referring to the diagram provided, complete the sentences below:

The rectangle has a height of 5 cm .
The rectangle has a width of 3 cm .
The rectangle is made of 15 small squares.
The rectangle has an area of $15 \mathrm{~cm}^{2}$.

Descriptive Doing

If each smaller square has an area of $1 \mathrm{~cm}^{2}$, what is the shape's total area?

Say the area out loud for each shape.

Descriptive Doing - ANSWERS

Descriptive Doing

Point to the shapes that do not have an area of $24 \mathrm{~cm}^{2}$.

Descriptive Doing - ANSWERS

$$
\square=1 \mathrm{~cm}^{2}
$$

Reflective Teaching

I have drawn two different rectangles that have an area of $6 \mathrm{~cm}^{2}$.

	-												
	\vdots										1 cm		
	m						6	cm					
		2 cm											

$\square=1 \mathrm{~cm}^{2}$

Reflective Doing

If you have access to, or are able to print squared paper (I have attached a document to Week 4), please have a go at these activities.

Draw two different rectangles that have an area of $10 \mathrm{~cm}^{2}$, labelling side lengths.
$\square=1 \mathrm{~cm}^{2}$

Reflective Doing - ANSWERS

-					
	¢				

			${ }^{20} \mathrm{~cm}$		${ }^{2 \mathrm{~cm}}$	

Reflective Doing

Draw two different rectangles that have an area of $16 \mathrm{~cm}^{2}$, labelling side lengths.
$\square=1 \mathrm{~cm}^{2}$

Reflective Doing - ANSWERS

| \square | | | | A | | |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| | | | | | | |
| | | | | | | |
| | | | | | | |
| | | | | | | |

Reflective Doing

What is the area of the rectangle shown below?

$$
\square=1 \mathrm{~cm}^{2}
$$

Draw a rectilinear shape with the same area:

Reflective Doing - ANSWERS

What is the area of the rectangle shown below?

$$
9 \mathrm{~cm}^{2}
$$

$$
\square=1 \mathrm{~cm}^{2}
$$

Draw a rectilinear shape with the same area:

Reflective Doing

James says, "The area of the shape is $35 \mathrm{~cm}^{2}$."

Do you agree?

Explain your answer.

I agree/I disagree because...

Reflective Doing - ANSWERS

No, I do not agree.
It is a rectilinear shape, not a rectangle. There are missing dimensions, so we do not know how much less than $35 \mathrm{~cm}^{2}$ the shape's area would be.

Choose your challenge

Challenges can be found on the document named 'Maths Challenges Day 1'.

Choose an appropriate challenge OR work through green, orange and red.

Answers can be found at the bottom of the document.

Reflection Time

Is Astrobee's statement the only correct response?
Explain your answer.

Reflection Time - ANSWERS

No, it is also true to say that the green rectangle doesn't belong.

The green rectangle has an area of $20 \mathrm{~cm}^{2}$, unlike the other shapes as they each have an area of $18 \mathrm{~cm}^{2}$.

Perimeter, Area and Volume

Day 2

Starter

Find the word 'perimeter' and 'area' in a dictionary (or online). Then, copy and complete the table below in your book. Do one table for each word.

Starter - ANSWERS

Starter - ANSWERS

definition:
The area of a shape, an object or a part of
land is the whole amount of space it totals

or covers. | Characteristics: |
| :--- |
| The complete inner space covered by the |
| inside of an item, place or |

Date: Day 2

LO: To calculate the perimeter and area of rectangles and rectilinear shapes.

Date: Day 2

LO: To calculate the perimeter and area of

 rectangles and rectilinear shapes.Success Criteria
I can use my knowledge of formulae for calculating the areas and perimeters of rectangles and rectilinear shapes to explore the perimeters and areas of similar and non-similar rectangles and rectilinear shapes.
I can explain my reasoning.

Descriptive Teaching

What is the difference between area and perimeter?

Area is the total amount of space within a shape.
Perimeter is the total length of all a shape's sides combined.

Descriptive Teaching

To find the area of a shape, you multiply the width by length.
$A=l \times w$
e.g. $9 \mathrm{~cm} \times 5 \mathrm{~cm}=45 \mathrm{~cm}^{2}$

Descriptive Teaching

To find the perimeter of a shape, you find the total of all the sides.
You can use the formula $P=2(l+w)$.
e.g. $2(9+5)=14 \times 2=28 \mathrm{~cm}$

Descriptive Doing

Find the area and perimeter of this shape.

Descriptive Doing - ANSWERS

Area

$7 \mathrm{~cm} \times 4 \mathrm{~cm}=28 \mathrm{~cm}^{2}$

Perimeter
$2(7 \times 4)=11 \times 2=22 \mathrm{~cm}$
$4+4+7+7=22 \mathrm{~cm}$

7 cm

Descriptive Doing

Find the area and perimeter of this shape.

Descriptive Doing - ANSWERS

Area

$11 \mathrm{~cm} \times 6 \mathrm{~cm}=66 \mathrm{~cm}^{2}$

Perimeter
$2(11+6)=17 \times 2=34 \mathrm{~cm}$
$6+6+11+11=34 \mathrm{~cm}$
6 cm

Descriptive Teaching

To find the perimeter of a rectilinear shape, add all the side lengths together.

$$
\text { e.g. } 5+5+5+3+10+8=36 \mathrm{~m}
$$

Descriptive Teaching

To find the area of a rectilinear shape, split the shape into rectangles (as shown). Then work out the area of each rectangle and add them together.

Descriptive Doing

Find the areas and perimeters of the shapes.

Descriptive Doing - ANSWERS

Perimeter:
$2(8+2)=2 \times 10=20 \mathrm{~cm}$
Area:
$8 \mathrm{~cm} \times 2 \mathrm{~cm}=16 \mathrm{~cm}^{2}$

Reflective Teaching

To calculate the missing value on a shape, you may need to use an inverse operation.

$$
\text { Area }=8 \mathrm{~cm}^{2}
$$

Perimeter $=\mathbf{1 2} \mathrm{cm}$
$8 \mathrm{~cm}^{2} \div 4 \mathrm{~cm}=2 \mathrm{~cm}$
$4+4+2+2=12$

Reflective Doing

Calculate the missing values.

$$
\text { Area }=\ldots \mathrm{cm}^{2}
$$

Perimeter $=28 \mathrm{~cm}$

$$
\text { Area }=36 \mathrm{~cm}^{2}
$$

Perimeter $=\ldots \mathrm{cm}$

Reflective Doing - ANSWERS

Area $=45 \mathrm{~cm}^{2}$

$$
\text { Area }=36 \mathrm{~cm}^{2}
$$

Perimeter $=30 \mathrm{~cm}$

Perimeter $=28 \mathrm{~cm}$

$$
\text { Area }=64 \mathrm{~cm}^{2}
$$

Perimeter $=32 \mathrm{~cm}$

Reflective Doing

Draw two rectilinear shapes that have an area of $48 \mathrm{~cm}^{2}$ but have a different perimeter, stating what the perimeter is for each shape.

You will need to use a ruler for this.

Reflective Doing

$$
\square=1 \mathrm{~cm}^{2}
$$

Draw two rectilinear shapes with the area $4 \mathrm{~cm}^{2}$.

The first shape must have the smallest perimeter possible.
The second shape must have the greatest possible perimeter.

Reflective Doing - ANSWERS

Reflective Doing

Farmer Sam has 60 m of chicken wire. What is the largest enclosure she can create for her chickens?

What is the smallest enclosure she can create for her chickens?

All values must be whole numbers.

Reflective Doing - ANSWERS

The largest enclosure possible is $225 \mathrm{~m}^{2}$. A 15 by 15 m square enclosure.

The smallest possible enclosure is $29 \mathrm{~m}^{2}$. A rectangular run of 29 m by 1 m .

Reflective Doing

James says, "Two rectangles can share the same area, but have different perimeters."

Ruth says, "Two rectangles can share the same perimeter, but have different areas."

Who is correct?
Explain your answer.

Ruth/James/They both are correct because...

Reflective Doing - ANSWERS

They are both correct.
For example, a $4 \mathrm{~cm} \times 9 \mathrm{~cm}$ rectangle has an area of $36 \mathrm{~cm}^{2}$ and a perimeter of 26 cm . While a 6 cm square also has an area of $36 \mathrm{~cm}^{2}$ and a perimeter of 24 cm .
Similarly, a $1 \mathrm{~cm} \times 11 \mathrm{~cm}$ rectangle has a perimeter of 24 cm and an area of $11 \mathrm{~cm}^{2}$. While a $2 \mathrm{~cm} \times 10 \mathrm{~cm}$ rectangle has a perimeter of 24 cm and an area of $20 \mathrm{~cm}^{2}$.

Choose your challenge

Challenges can be found on the document named 'Maths Challenges Day 2'.

Choose an appropriate challenge OR work through green, orange and red.

Answers can be found at the bottom of the document.

Reflection Time

Is Astrobee's statement sometimes, always or never true?
Provide examples to explain your answer.

The statement is __ true because...
\qquad
If a shape has a greater perimeter than another shape, then it has a

Reflection Time - ANSWERS

Astrobee's statement is only sometimes true. E.g. a square with a perimeter of 64 cm has an area of $32 \mathrm{~cm}^{2}$.
However, a 1 cm by 17 cm rectangle has a perimeter of 36 cm but an area of only $17 \mathrm{~cm}^{2}$.

Perimeter, Area and Volume

Day 3

Starter

Which one doesn't belong? Explain your answer.

Starter - ANSWERS

The yellow triangle doesn't belong, as its area is $1 \mathrm{~cm}^{2}$.

The other triangles are $2 \mathrm{~cm}^{2}$.

Date: Day 3
LO: To calculate the area of a triangle.

Date: Day 3

LO: To calculate the area of a triangle.

Success Criteria

I can find the area of triangles by counting squares in a 1 cm grid.
I can explain my reasoning.

Descriptive Teaching

You can find the area of a triangle by counting the squares.

This triangle has one whole square and two half squares. Therefore the area if $2 \mathrm{~cm}^{2}$.

Descriptive Doing

$$
\square=1 \mathrm{~cm}^{2}
$$

Calculate the area of the right-angled triangles.

Descriptive Doing - ANSWERS

Reflective Doing

James says, "The triangle below is $6 \mathrm{~cm}^{2}$."
What has James done wrong?
Explain your answer.

James has...

Reflective Doing - ANSWERS

James has counted each part squares as whole squares. The triangle is made from two whole squares and four part squares.
Its area is $4 \mathrm{~cm}^{2}$.

Reflective Doing

Count the squares for the two triangles below. What's the same? What's different?

Reflective Doing - ANSWERS

Different types of triangles, both have the same area, $4.5 \mathrm{~cm}^{2}$.

Reflective Doing

Count the squares for the two shapes below. What's the same? What's different?

Reflective Doing - ANSWERS

The triangle covers half the space the square does. (Same height and width).

Choose your challenge

Challenges can be found on the document named 'Maths Challenges Day 3'.

Choose an appropriate challenge OR work through green, orange and red.

Answers can be found at the bottom of the document.

Reflection Time

The area of the triangle is $8 \mathrm{~cm}^{2}$.

Do you agree?
Explain your answer.

I agree/I disagree because...

Reflection Time - ANSWERS

No, $8 \mathrm{~cm}^{2}$ can be counted before the splat. However, if the triangle is drawn to completion beneath the splat, then the triangle will have a total area of $9 \mathrm{~cm}^{2}$.

Perimeter, Area and Volume

Day 4

Starter

What's the same? What's different?

Explain your answer.

Starter - ANSWERS

The yellow triangle is 1 cm tall and 4 cm wide and the purple triangle is 2 cm tall and 2 cm wide, but both share the same area, $2 \mathrm{~cm}^{2}$.

Starter

Using a rectangular piece of paper, discuss how right-angled triangles can be made.

How might we calculate the area of a rightangled triangle?

Starter - ANSWERS

Find the area of the rectangle, then half the result.

Date: Day 4
LO: To calculate the area of a triangle.

Date: Day 4

LO: To calculate the area of a triangle.

Success Criteria

I can use my knowledge of finding the area of a triangle using a grid to calculate the area of rightangled triangles.
I can explain my reasoning.

Descriptive Teaching

To find the area of a rightangled triangle, first find the area of the rectangle, then half it.

The area of the rectangle is $8 \mathrm{~cm}^{2}$.

$$
8 \mathrm{~cm}^{2} \div 2=4 \mathrm{~cm}^{2} .
$$

Therefore, the area of the triangle is $4 \mathrm{~cm}^{2}$.

Descriptive Teaching

You can also draw the remaining sides to create the rectangle, before finding the area.

The area of the rectangle is $24 \mathrm{~cm}^{2}$.
$24 \mathrm{~cm}^{2} \div 2=12 \mathrm{~cm}^{2}$.

Descriptive Doing

What is the area of the right-angled triangle?

Find the area of the rectangle, then half it.

Descriptive Doing - ANSWERS

The area of the rectangle is $40 \mathrm{~cm}^{2}$. The area of the right-angled triangle is $20 \mathrm{~cm}^{2}$.

Descriptive Doing

Calculate the areas of the right-angled triangles.

Descriptive Doing - ANSWERS

Reflective Teaching

The formula for finding the area of a triangle is $1 / 2 \mathrm{x}$ base x perpendicular height.
e.g. the base of this triangle is 8 cm and the perpendicular height is 6 cm .

Therefore $8 \mathrm{~cm} \times 6 \mathrm{~cm}=48 \mathrm{~cm}$ $48 \mathrm{~cm} \div 2=24 \mathrm{~cm}^{2}$.

Reflective Doing

Calculate the areas of the right-angled triangles using the formula:
$1 / 2 \times$ base \times perpendicular height.

Reflective Doing - ANSWERS

Reflective Doing

Calculate the areas of the right-angled triangles.

Reflective Doing - ANSWERS

Area:
$135 \mathrm{~cm}^{2}$
Area:
$40.5 \mathrm{~mm}^{2}$

Choose your challenge

Challenges can be found on the document named 'Maths Challenges Day 4'.

Choose an appropriate challenge OR work through green, orange and red.

Answers can be found at the bottom of the document.

Reflection Time

Astrobee has made two errors in the suggested strategy above.
Correct the strategy and find the area of the triangle.

Reflection Time - ANSWERS

The area of the triangle is $864 \mathrm{~cm}^{2}$. $48 \mathrm{~cm} \times 36 \mathrm{~cm}=1728 \mathrm{~cm}^{2}$.
$1728 \mathrm{~cm}^{2} \div 2=864 \mathrm{~cm}^{2}$.

Perimeter, Area and Volume

Starter

What's the same? What's different?

Explain your answer.

Starter - ANSWERS

Both triangles share the same base and perpendicular height, so have the same area as $(6 \mathrm{~cm} \times 4 \mathrm{~cm}) \div 2=12 \mathrm{~cm}^{2}$. The pink triangle is right-angled and the yellow is isosceles.

Date: Day 5
LO: To calculate the area of a triangle.

Date: Day 5

LO: To calculate the area of a triangle.

Success Criteria

I can use my knowledge of calculating the area of right-angled triangles to calculate the area of other types of triangles.
I can explain my reasoning.

Descriptive Teaching

To find the area of any triangle you use the formula:
$1 / 2 \times$ base \times perpendicular height.
E.g. $7 \mathrm{~cm} \times 6 \mathrm{~cm}=42 \mathrm{~cm}$
$42 \mathrm{~cm} \div 2=21 \mathrm{~cm}^{2}$
The area of the triangle is $21 \mathrm{~cm}^{2}$.

Descriptive Doing

What are the areas of the triangles?

5 cm

Descriptive Doing - ANSWERS

5 cm

Descriptive Doing

Yasmin says, "The area of the triangle is $70 \mathrm{~cm}^{2}$." Ahmed says, "The area of the triangle is $35 \mathrm{~cm}^{2}$." Jamal says, "The area of the triangle is $45 \mathrm{~cm}^{2}$."

Only one of them is correct. Who?
Explain your answer.

Descriptive Doing - ANSWERS

Ahmed is correct.
He has multiplied the base by the perpendicular height and halved the result:
$(10 \mathrm{~cm} \times 7 \mathrm{~cm}) \div 2=35 \mathrm{~cm}^{2}$.

Yasmin has forgotten to halve the result. Jamal has multiplied the other side length by the base and halved the result, so his answer of $45 \mathrm{~cm}^{2}$ is incorrect.

Reflective Teaching

The base is (10cm)

The perpendicular height is
(5cm)

Reflective Doing

Point to the base (B) and the perpendicular height (H) on the triangles.

Reflective Doing - ANSWERS

Reflective Doing

Calculate the area of the triangles.

Reflective Doing - ANSWERS

Area:
$40 \mathrm{~m}^{2}$

Reflective Teaching

What is the value of the yellow area?

To find the value, you need to find the area of the white triangle first.
$4 \mathrm{~m} \times 4 \mathrm{~m}=16 \mathrm{~m}$
$16 \mathrm{~m} \div 2=8 \mathrm{~m}^{2}$

The yellow are is the same size as the
 white triangle, so the value is $8 \mathrm{~m}^{2}$.

Reflective Doing

What is the value of the pink area?

Use the method shown on the slide before.

Reflective Doing - ANSWERS

The value of the pink area is $36 \mathrm{~cm}^{2}$.

Reflective Teaching

To find the missing value on a triangle, you will need to use inverse operations.

For example, the area is $55 \mathrm{~m}^{2}$.
$55 \mathrm{~m}^{2} \times 2=110^{2}$
$110^{2} \div 11 \mathrm{~m}=10 \mathrm{~m}$
(Multiply the area by 2, then divide by the given side).

Reflective Doing

What is the missing value for each of the triangle's?

Area:
$3 \mathrm{~cm}^{2}$

Reflective Doing - ANSWERS

Area:
$3 \mathrm{~cm}^{2}$

Choose your challenge

Challenges can be found on the document named 'Maths Challenges Day 5'.

Choose an appropriate challenge OR work through green, orange and red.

Answers can be found at the bottom of the document.

Reflection Time

The statement is
\qquad true because...

Is Astrobee's statement sometimes, always or never true?
Provide examples to explain your answer.

Reflection Time - ANSWERS

Astrobee's statement is sometimes true. For example, if a triangle has a base of 4 cm and a height of 3 cm , it will have an even area of $6 \mathrm{~cm}^{2}$. However, if it has a base of 6 cm and a height of 7 cm , it will have an odd area of $21 \mathrm{~cm}^{2}$.

If a triangle's base is odd and its perpendicular height is even, its area will be an odd amount.

