DIVISION - DAY 2

L.O. I can use mathematical equipment to support my understanding of dividing 2 -digit numbers by 1 -digit numbers, with remainders.
Which one doesn't belong?
a) $24 \div 4$
b) $36 \div 6$
c) $19 \div 3$
d) $30 \div 5$

Explain your answer.

L.O. I can use mathematical equipment to support my understanding of dividing 2-digit numbers by 1 -digit numbers, with remainders.

STARTER

L.O. I can use mathematical equipment to support my understanding of dividing 2 -digit numbers by 1 -digit numbers, with
Which one doesn't belong? remainders.
a) $24 \div 4$
b) $36 \div 6$
c) $19 \div 3$
d) $30 \div 5$
c) doesn't belong as $19 \div 3=6 \mathrm{r} .1$, while the other calculations all share 6 as a quotient without a remainder: a) $24 \div 4=6$, b) $36 \div 6=6$ and d) $30 \div 5=6$.

FLUENCY

L.O. I can use mathematical equipment to support my understanding of dividing 2-digit numbers by 1 -digit numbers, with remainders.

tens	ones

FLUENCY

L.O. I can use mathematical equipment to support my understanding of dividing 2 -digit numbers by 1 -digit numbers, with
Ruth uses a place value chart, Base 10 and a part-whole model to calculate $23 \div 2$. remainders.

tens	ones
Hnmm	\square
$\pi n m m$	\square

FLUENCY

Ruth uses a place value chart, Base 10 and a part-whole model to calculate $68 \div 3$.

tens	ones

$-m=m$

L.O. I can use mathematical equipment to support my understanding of dividing 2 -digit numbers by 1 -digit numbers, with remainders.

FLUENCY

L.O. I can use mathematical equipment to support my understanding of dividing 2 -digit numbers by 1 -digit numbers, with

Ruth uses a place value chart, Base 10 and a part-whole model to calculate $68 \div 3$. remainders.

tens	ones
	可
	7 7
\#Hmmm	$5 \square$

FLUENCY

Use a place value chart，mathematical equipment and part－whole models． Calculate：

L．O．I can use mathematical equipment to support my understanding of dividing 2 －digit numbers by 1 －digit numbers，with remainders．
a） $37 \div 3=$
b） $86 \div 4=$
c） $67 \div 3=$

tens	ones
	－
	回回
	回回

d） $62 \div 3=$
e） $95 \div 3=$

FLUENCY

Use a place value chart，mathematical equipment and part－whole models． Calculate：

L．O．I can use mathematical equipment to support my understanding of dividing 2 －digit numbers by 1 －digit numbers，with remainders．
a） $37 \div 3=\underline{12 r .1}$
b） $86 \div 4=\underline{21 r} .2$
c） $67 \div 3=\underline{22 r} .1$

tens	ones
	回吅
Wा1m	－
	司吕

d） $62 \div 3=\underline{20 r}$ ． 2
e） $95 \div 3=\underline{31 r} \cdot 2$

FLUENCY

L.O. I can use mathematical equipment to support my understanding of dividing 2-digit numbers by 1 -digit numbers, with remainders.

James uses a place value chart, counters and a part-whole model to calculate $44 \div 3$. He shares the tens first, but has one ten leftover he needs to exchange and share...

tens	ones

FLUENCY

L.O. I can use

James uses a place value chart, counters and a part-whole model to calculate $44 \div 3$. He shares the tens first, but has one ten leftover he needs to exchange and share... mathematical equipment to support my understanding of dividing 2 -digit numbers by 1 -digit numbers, with remainders.

tens	ones

 2

FLUENCY

Use a place value chart, mathematical equipment and part-whole models. Calculate:
L.O. I can use mathematical equipment to support my understanding of dividing 2 -digit numbers by 1 -digit numbers, with
a) $77 \div 3=$
b) $55 \div 4=$
c) $98 \div 4=$
d) $77 \div 6=$
e) $89 \div 7=$

FLUENCY

Use a place value chart, mathematical equipment and part-whole models. Calculate:
a) $77 \div 3=\underline{25 r} .2$
b) $55 \div 4=13 \mathrm{r} .3$
c) $98 \div 4=\underline{24} \mathrm{r} .2$
d) $77 \div 6=\underline{12 r .5}$

e) $89 \div 7=\underline{12 r .5}$

PROBLEM SOLVING

Yasmin completes the following calculation:
$40 \div 3=13 \mathrm{r} .1$
She says, " 40 is worth one more than a multiple of 3 ."

Do you agree?
Explain how you know.
L.O. I can use mathematical equipment to support my understanding of dividing 2 -digit numbers by 1 -digit numbers, with remainders.

PROBLEM SOLVING

L.O. I can use mathematical equipment to support my understanding of dividing 2 -digit numbers by 1-digit numbers, with
Yasmin completes the following calculation: remainders.
$40 \div 3=13$ r. 1
She says, " 40 is worth one more than a multiple of 3 ."

Yes, I agree with Yasmin.
She has completed the division calculation correctly, which means that 40 must be worth one more than a multiple of 3 as there is a remainder of 1 , the dividend having been divided by 3 .
40 is worth one more than 39 , the product of 13 and 3 .

51 marbles are shared between four friends.
How many marbles remain after they have been shared equally? dividing 2 -digit numbers by 1 -digit numbers, with remainders.

James says, "There is one marble left over."
Ahmed says, "There are eleven marbles left over."
Ruth says, "There are three marbles left over."
Yasmin says, "There are four marbles left over."

PROBLEM SOLVING

51 marbles are shared between four friends.
How many marbles remain after they have been shared equally?
L.O. I can use mathematical equipment to support my understanding of dividing 2 -digit numbers by 1 -digit numbers, with remainders.

James says, "There is one marble left over."
Ahmed says, "There are eleven marbles left over." Ruth says, "There are three marbles left over."
Yasmin says, "There are four marbles left over."

```
Ruth is correct, as 51 %4=12 r.3. It is possible to share
48 equally as }48\mathrm{ is a multiple of 12, then three marbles
are left over.
```


PROBLEM SOLVING

Jamal is thinking of a two-digit number.
It is less than 50.
When it is divided by 2 , there is a remainder of 1 .
When it is divided by 3 , there is not a remainder.
When it is divided by 4 , there is a remainder of 3 .
When it is divided by 5 , there is a remainder of 4 .

What number is Jamal thinking of?
Explain your answer.

PROBLEM SOLVING

Jamal is thinking of a two-digit number.
 It is less than 50.

When it is divided by 2 , there is a remainder of 1 .
When it is divided by 3 , there is not a remainder.
When it is divided by 4 , there is a remainder of 3 .
When it is divided by 5 , there is a remainder of 4 .

What number is Jamal thinking of?

Explain your answer.

Jamal is thinking of the number 39. It is a multiple of 3 , so it will not have a remainder when divided by 3 . When divided by two 39 has a remainder of 1, it has a
remainder of 3 when divided by $4(39 \div 4=9$ r. 3) and has a remainder of 4 when divided by $5(35 \div 5=7$ r. 4$)$.
L.O. I can use mathematical equipment to support my understanding of dividing 2 -digit numbers by 1 -digit numbers, with remainders.

REASONING

L.O. I can use mathematical equipment to support my understanding of dividing 2 -digit numbers by 1 -digit numbers, with remainders.

Is Astrobee's statement always, sometimes or never true?
Explain your answer.
L.O. I can use mathematical equipment to support my understanding of dividing 2 -digit numbers by 1 -digit numbers, with remainders.

Astrobee's statement is always true. For example, $13 \div 4=3 \mathrm{r} .1,77 \div 6=12 \mathrm{r} .5$ and $99 \div 10=9$ r. 9

