DIVISION - DAY 1

L.O. I can use mathematical equipment to support my understanding of dividing 2 -digit numbers by 1 -digit numbers, without requiring remainders.
L.O. I can use mathematical FLUENCY equipment to support my understanding of dividing 2 digit numbers by 1 -digit numbers, without requiring remainders

Ruth uses a place value chart, Base 10 and a part-whole model to calculate $22 \div 2$.

tens	ones

L.O. I can use mathematical FLUENCY equipment to support my understanding of dividing 2 digit numbers by 1 -digit numbers, without requiring remainders

Ruth uses a place value chart, Base 10 and a part-whole model to calculate $22 \div 2$.

tens	ones
W111010	\square
Unumblol	\square

L.O. I can use mathematical equipment to support my understanding of dividing 2 digit numbers by 1 -digit numbers, without requiring remainders

Ruth uses a place value chart, Base 10 and a part-whole model to calculate $66 \div 3$.

tens	ones

L.O. I can use mathematical FLUENCY equipment to support my understanding of dividing 2 digit numbers by 1 -digit numbers, without requiring remainders

Ruth uses a place value chart, Base 10 and a part-whole model to calculate $66 \div 3$.

tens	ones
	-
	\square
	-

L.O. I can use mathematical FLUENCY equipment to support my understanding of dividing 2 digit numbers by 1 -digit numbers, without requiring remainders

Use a place value chart, mathematical equipment and part-whole models. Calculate:
a) $48 \div 4=$
b) $88 \div 4=$
c) $69 \div 3=$
d) $63 \div 3=$
e) $96 \div 3=$

FLUENCY

L.O. I can use mathematical equipment to support my understanding of dividing 2 digit numbers by 1 -digit numbers, without requiring remainders

Use a place value chart, mathematical equipment and part-whole models. Calculate:
a) $48 \div 4=12$
b) $88 \div 4=\underline{22}$
c) $69 \div 3=\underline{23}$
d) $63 \div 3=\underline{21}$
e) $96 \div 3=\underline{32}$
L.O. I can use mathematical FLUENCY equipment to support my understanding of dividing 2 digit numbers by 1 -digit numbers, without requiring remainders

James uses a place value chart, counters and a part-whole model to calculate $72 \div 3$. He shares the tens first, but has one ten leftover he needs to exchange and share...

tens	ones

L.O. I can use mathematical FLUENCY equipment to support my understanding of dividing 2 digit numbers by 1 -digit numbers, without requiring remainders

James uses a place value chart, counters and a part-whole model to calculate $72 \div 3$. He shares the tens first, but has one ten leftover he needs to exchange and share...

tens	ones

L.O. I can use mathematical equipment to support my understanding of dividing 2 digit numbers by 1 -digit numbers, without requiring remainders

Use the comparison symbols ($<,>$ and $=$) to complete the following:

L.O. I can use mathematical equipment to support my understanding of dividing 2 digit numbers by 1 -digit numbers, without requiring remainders

Use the comparison symbols (<, > and =) to complete the following:

L.O. I can use mathematical equipment to support my understanding of dividing 2 digit numbers by 1 -digit numbers, without requiring remainders

Use the comparison symbols (<, > and =) to complete the following:

L.O. I can use mathematical equipment to support my understanding of dividing 2 digit numbers by 1 -digit numbers, without requiring remainders

Use the comparison symbols ($<,>$ and $=$) to complete the following:

PROBLEM SOLVING

L.O. I can use mathematical equipment to support my understanding of dividing 2 digit numbers by 1 -digit numbers, without requiring remainders

Ahmed has 72 marbles.
He gives them away in equal amounts to friends at school. He has no marbles left over after handing them out.
How many people might he have given marbles too, and how many marbles would each person have received?

PROBLEM SOLVING

L.O. I can use mathematical equipment to support my understanding of dividing 2 digit numbers by 1 -digit numbers, without requiring remainders

Ahmed has 72 marbles.
He gives them away in equal amounts to friends at school. He has no marbles left over after handing them out.
How many people might he have given marbles too, and how many marbles would each person have received?

Ahmed might have given 1 person 72 marbles, 2 people 36 marbles each, 3 people 24 marbles each, 4 people 18 marbles each, 6 people 12 marbles each, 8 people 9 marbles each, 9 people 8 marbles each, 12 people 6 marbles each, 18 people 4 marbles each, 24 people 3 marbles each, 36 people 2 marbles each, 72 people 1 marble each.

REASONING

L.O. I can use mathematical equipment to support my understanding of dividing 2 digit numbers by 1 -digit numbers, without requiring remainders
Evaluation:

Before starting,
 I know that $96 \div 4$ will require an exchange.

Do you agree?
Provide other examples and non-examples to support your response.
L.O. I can use mathematical

REASONING

 equipment to support my understanding of dividing 2 digit numbers by 1 -digit numbers, without requiring remainders
Evaluation:

Before starting,

I know that $96 \div 4$ will require an exchange.

If the dividend's tens digit is not a multiple of the divisor, an exchange will be required. For example, $75 \div 3$ requires an exchange to arrive at the quotient, 25 . However, if the tens digit in the dividend is a multiple of the divisor, for example $66 \div 3=22$, then an exchange is not required.

