# DIVISION - DAY 3







L.O. I can use mathematical equipment to support my understanding of dividing 3-digit numbers by 1-digit numbers

## Talking Time:

Yasmin is using place value counters to divide 306 by 3.

| hundreds | tens | ones |
|----------|------|------|
|          |      |      |
|          |      |      |
|          |      |      |
|          |      |      |





L.O. I can use mathematical equipment to support my understanding of dividing 3-digit numbers by 1-digit numbers

Yasmin is using place value counters to divide 480 by 4.

| hundreds | tens | ones |
|----------|------|------|
|          |      |      |
|          |      |      |
|          |      |      |
|          |      |      |
|          |      |      |



L.O. I can use mathematical equipment to support my understanding of dividing 3-digit numbers by 1-digit numbers

Yasmin is using place value counters to divide 480 by 4.

hundreds

tens

ones  $480 \div 4$  = 120  $80 \div 4$  = 20 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100

L.O. I can use mathematical equipment to support my understanding of dividing 3-digit numbers by 1-digit numbers

#### Use Yasmin's strategy to calculate:

a) 
$$603 \div 3 =$$

| hundreds | tens | ones |
|----------|------|------|
| 0        | 9    |      |
| 0        | 0    |      |
| 0        | 0    |      |
| 0        | 9    |      |



L.O. I can use mathematical equipment to support my understanding of dividing 3-digit numbers by 1-digit numbers

#### Use Yasmin's strategy to calculate:

a) 
$$603 \div 3 = 201$$

b) 
$$960 \div 3 = 320$$

c) 
$$408 \div 4 = 102$$

e) 
$$848 \div 4 = 212$$

| hundreds | tens     | ones |
|----------|----------|------|
|          | (a)      |      |
| <u></u>  | <b>.</b> |      |
| <u></u>  | 0        |      |
|          | <b>.</b> |      |



| Partition 377 in many | ways to divide it by 3. |
|-----------------------|-------------------------|
|-----------------------|-------------------------|

| hundreds | tens  | ones |
|----------|-------|------|
| 100      | 10 10 |      |
| 100      | 10 10 |      |
| 100      | 10 10 |      |



L.O. I can use mathematical equipment to support my understanding of dividing 3-digit numbers by 1-digit numbers

Partition 377 in many ways to divide it by 3.

| hundreds | tens  | ones |
|----------|-------|------|
| 100      | 10 10 |      |
| 100      | 10 10 |      |
| 100      | 10 10 |      |



L.O. I can use mathematical equipment to support my understanding of dividing 3-digit numbers by 1-digit numbers

#### Partition the following numbers in many ways to solve:

e) 857 ÷ 7

| hundreds | tens                              | ones |
|----------|-----------------------------------|------|
|          | <ul><li>(*)</li><li>(*)</li></ul> | •    |
| •        | •                                 | •    |
| 0        | <ul><li>•</li></ul>               | •    |
| 0        | (s)<br>(s)                        | 0    |



L.O. I can use mathematical equipment to support my understanding of dividing 3-digit numbers by 1-digit numbers

#### Partition the following numbers in many ways to solve:

a) 
$$352 \div 3 = 117 \text{ r.1}$$

b) 
$$764 \div 3 = 254 \text{ r.}2$$

c) 
$$734 \div 6 = 122 \text{ r.2}$$

d) 
$$854 \div 6 = 142 \text{ r.2}$$

e) 
$$857 \div 7 = 122 \text{ r.3}$$

| hundreds | tens                | ones |
|----------|---------------------|------|
| •        | •                   | 0    |
| 0        | •                   | •    |
| 0        | •                   | •    |
| 0        | <ul><li>●</li></ul> | •    |



L.O. I can use mathematical equipment to support my understanding of dividing 3-digit numbers by 1-digit numbers

Use part-whole models to help you solve the word problems below:

a) A bakery produces 367 muffins per day. They place 3 muffins in a box. How many boxes do they use each day? Are there any muffins left over at the end of the day?



b) A farmer picked 637 pears last week. She placed them in boxes with 6 pears in each box. How many boxes did she fill? Did she have any pears left over?



L.O. I can use mathematical equipment to support my understanding of dividing 3-digit numbers by 1-digit numbers

Use part-whole models to help you solve the word problems below:

- a) A bakery produces 367 muffins per day.
  They place 3 muffins in a box.
  How many boxes do they use each day?
  Are there any muffins left over at the end of the day?
  367 ÷ 3 = 122 r.1, so 122 boxes are used with one muffin left over!
- b) A farmer picked 637 pears last week.
  She placed them in boxes with 6 pears in each box.
  How many boxes did she fill?
  Did she have any pears left over?
  637 ÷ 6 = 106 r.1, so 106 boxes are filled with one pear left over!

L.O. I can use mathematical equipment to support my understanding of dividing 3-digit numbers by 1-digit numbers

Use part-whole models to help you solve the word problems below:

a) A bakery produces 698 cookies per day. They place 3 cookies in a bag. How many bags do they use each day? Are there any cookies left over at the end of the day?



b) A farmer picked 755 apples last week. She placed them in boxes with 6 apples in each box. How many boxes did she fill? Did she have any apples left over?



L.O. I can use mathematical equipment to support my understanding of dividing 3-digit numbers by 1-digit numbers

Use part-whole models to help you solve the word problems below:

- a) A bakery produces 698 cookies per day.
  They place 3 cookies in a bag.
  How many bags do they use each day?
  Are there any cookies left over at the end of the day?
  698 ÷ 3 = 232 r.2, so 132 bags are used with two cookies left over!
- b) A farmer picked 755 apples last week.
  She placed them in boxes with 6 apples in each box.
  How many boxes did she fill?
  Did she have any apples left over?
  755 ÷ 6 = 125 r.5, so 125 boxes are filled with five apples left over!

L.O. I can use mathematical equipment to support my understanding of dividing 3-digit numbers by 1-digit numbers

Using 15 counters and a place value chart, create:

- a three-digit number that can be divided by 2;
- b) a three-digit number than can be divided by 4;
- a three-digit number that can be divided by 3;
- d) a three digit number that can be divided by 5.

hundreds tens ones



Extension: Create three-digit numbers that are divisible by 6, 7, 8 and 9...

L.O. I can use mathematical equipment to support my understanding of dividing 3-digit numbers by 1-digit numbers

Using 15 counters and a place value chart, create:

- a three-digit number that can be divided by 2;
   For example, 762, 870...
- b) a three-digit number than can be divided by 4; For example, 744, 780...
- a three-digit number that can be divided by 3;
   For example, 366, 393...
- d) a three digit number that can be divided by 5.
   For example, 555, 780, 870...





## **REASONING**



Explain your answer.

#### **REASONING**



L.O. I can use mathematical equipment to support my understanding of dividing 3-digit numbers by 1-digit numbers

Astrobee's statement is only sometimes true. For example,  $606 \div 3 = 202$ , so an even three-digit number divided by an odd number that <u>does not</u> require a remainder. However,  $554 \div 5 = 110$  r.4, so an even three-digit number divided by an odd number that <u>does</u> require a remainder.