Benwick Primary School Calculation Policy

This document sets out the progression of teaching and learning for our children for addition, subtraction, multiplication and division. This policy supports the White Rose maths scheme used throughout the school. Progression within each area of calculation is in line with the programme of study in the 2014 National Curriculum.

This calculation policy should be used to support children to develop a deep understanding of number and calculation. This policy has been designed to teach children through the use of concrete, pictorial and abstract representations.

- Concrete representation - a pupil is first introduced to an idea or skill by acting it out with real objects. This is a 'hands on' component using real objects and is a foundation for conceptual understanding.
- Pictorial representation - a pupil has sufficiently understood the 'hands on' experiences performed and can now relate them to representations, such as a diagram or picture of the problem.
- Abstract representation-a pupil is now capable of representing problems by using mathematical notation, for example $12 \times 2=24$. It is important that conceptual understanding, supported by the use of representation, is secure for all procedures.

Calculations are taught and practised in lessons; reinforcement is achieved by revisiting the concrete, pictorial and abstract frequently through our Daily Calculations and our Maths lessons.

Calculation policy: Addition

Key language: sum, total, parts and wholes, plus, add, altogether, more, 'is equal to' 'is the same as'.
Combining two parts to make a whole (use other

resources too e.g. eggs, shells, teddy bears, cars). | Children to represent the cubes using dots or crosses. They |
| :--- |
| could put each part on a part whole model too. |
| F +3 |
| Four is a part, 3 is a part and the whole |
| is seven. |

Regrouping to make 10; using ten frames and counters/cubes or using Numicon. $6+5$ 080	Children to draw the ten frame and counters/cubes.	Children to develop an understanding of equality e.g. $\begin{aligned} & 6+\square=11 \\ & 6+5=5+\square \\ & 6+5=\square+4 \end{aligned}$
TO + O using base 10. Continue to develop understanding of partitioning and place value. $41+8$	Children to represent the base 10 e.g. lines for tens and dot/crosses for ones.	$41+8$ $\begin{aligned} & 1+8=9 \\ & 40+9=49 \end{aligned}$ $+\begin{array}{r} 41 \\ \hline 49 \end{array}$
TO + TO using base 10. Continue to develop understanding of partitioning and place value. $36+25$	Chidlren to represent the base 10 in a place value chart.	Looking for ways to make 10.

Use of place value counters to add HTO + TO, HTO + HTO etc. When there are 10 ones in the 1s column-we exchange for 1 ten, when there are 10 tens in the 10 s column- we exchange for 1 hundred.	Chidren to represent the counters in a place value chart, circling when they make an exchange.	43
	$100 \mathrm{~s}\|10 \mathrm{~s}\| \mathrm{Is}$	
100 s 10s s	$00 \quad 0000 \text { pop }$	$+368$
		611
		11
$6 \quad 1 \quad 1$	6	

Conceptual variation; different ways to ask children to solve 21 + 34

Word problems:
In year 3, there are 21 children and in $\quad 21$
year 4, there are 34 children.
How many children in total?
$+34$
$21+34=55$. Prove it
$21+34=$
!--7=21+34

Calculate the sum of twenty-one and thirty-four.

Missing digit problems:

10s	1s
	$?$
$?$	5

Calculation policy: Subtraction

Key language: take away, less than, the difference, subtract, minus, fewer, decrease.
Physically taking away and removing objects from a whole
(ten frames, Numicon, cubes and other items such as

beanbags could be used). | Children to draw the concrete resources they are using |
| :--- |
| and cross out the correct amount. The bar model can |
| also be used. |

Finding the difference (using cubes, Numicon or Cuisenaire rods, other objects can also be used).

Calculate the difference between 8 and 5 .

Making 10 using ten frames.
14-5

Column method using base 10 .

Children to draw the cubes/other concrete objects which \quad Find the difference between 8 and 5. they have used or use the bar model to illustrate what they need to calculate.

Children to present the ten frame pictorially and discuss what they did to make 10.

Children to represent the base 10 pictorially.

$8-5$, the difference is \square

Children to explore why
$9-6=8-5=7-4$ have the same difference.

Children to show how they can make 10 by partitioning the subtrahend.

$14-4=10$
$10-1=9$
Column method or children could count back 7 .

Calculation policy: Multiplication

Key language: double, times, multiplied by, the product of, groups of, lots of, equal groups.

Repeated grouping/repeated addition		
3×4		
$4+4+4$		
There are 3 equal groups, with 4 in each group.	Children to represent the practical resources in a picture and use a bar model.	$3 \times 4=12$

Calculation policy: Division

Key language: share, group, divide, divided by, half.

2d \div 1d with remainders using lollipop sticks. Cuisenaire rods, above a ruler can also be used.
$13 \div 4$
Use of lollipop sticks to form wholes- squares are made because we are dividing by 4 .

		$=14$		
10 s	IS		10s	15
-	(1) (1) (1)		-	
-	(1) (1) (1) (1)		-	
\bigcirc	(1) (1) (1)		-	

There are 3 whole squares, with 1 left over.

Children to represent the place value counters pictorially.

$13 \div 4-3$ remainder 1
Children should be encouraged to use their times table facts; they could also represent repeated addition on a number line.
' 3 groups of 4 , with 1 left over'

Children to be able to make sense of the place value counters and write calculations to show the process.

$$
\begin{aligned}
& 42 \div 3 \\
& 42=30+12 \\
& 30 \div 3=10 \\
& 12 \div 3=4 \\
& 10+4=14
\end{aligned}
$$

Short division using place value counters to group.
$615 \div 5$

1. Make 615 with place value counters.
2. How many groups of 5 hundreds can you make with 6 hundred counters?
3. Exchange 1 hundred for 10 tens.
4. How many groups of 5 tens can you make with 11 ten counters?
5. Exchange 1 ten for 10 ones.
6. How many groups of 5 ones can you make with 15 ones?

Long division using place value counters
$2544 \div 12$

1000s	100s	10s	1s
-Ө	-90®	O000	0000
1000s	100s	10s	Is
		गOOO	-రెర

We can't group 2 thousands into groups of 12 so will exchange them.

We can group 24 hundreds
into groups of 12 which leaves with 1 hundred.

$$
\begin{array}{r}
12 \begin{array}{c}
02 \\
2^{2} 544 \\
\frac{24}{1}
\end{array}
\end{array}
$$

Children to the calculation using the short division scaffold.

$5 \longdiv { 1 2 3 }$

1000s	100s	10s	1 Is

$\begin{array}{lc}\text { After exchanging the hundred, we } & 12 \\ \begin{array}{l}\text { have } 14 \text { tens. We can group } 12 \text { tens } \\ \text { into a group of } 12 \text {, which leaves } 2 \text { tens. }\end{array} & \frac{24}{14} \\ & \frac{12}{2}\end{array}$

1000s	100s	10s	1 s
		0000	$\begin{aligned} & 8088 \\ & 8808 \\ & 8808 \\ & \hline 8088 \\ & \hline \end{aligned}$

	0212
After exchanging the 2 tens, we 12	$1 2 \longdiv { 2 5 4 4 }$
have 24 ones. We can group 24 ones	24
into 2 group of 12 , which leaves no remainder	14
	24
	24

Conceptual variation; different ways to ask children to solve $615 \div 5$

Using the part whole model below, how can you divide 615 by 5 without using short division?

I have £615 and share it equally between 5 bank accounts. How much will be in each account?

615 pupils need to be put into 5 groups. How many will be in each group?

$5 \longdiv { 6 1 5 }$

$615 \div 5=$
$\boldsymbol{f} \boldsymbol{i}=615 \div 5$

What is the calculation?
What is the answer?

100 s	10 s	1 ls
$\Theta^{\bullet}-$		00000
Θ^{-}	00000	00000
		00000

Calculation policy: Guidance

	EYFS/Year 1	Year 2	Year 3	Year 4	Year 5	Year 6
	Combining two parts to make a whole: part whole model. Starting at the bigger number and counting on- using cubes. Regrouping to make 10 using ten frame.	Adding three single digits. Use of base 10 to combine two numbers.	Column methodregrouping. Using place value counters (up to 3 digits).	Column methodregrouping. (up to 4 digits)	Column methodregrouping. Use of place value counters for adding decimals.	Column methodregrouping. Abstract methods. Place value counters to be used for adding decimal numbers.
	Taking away ones Counting back Find the difference Part whole model Make 10 using the ten frame	Counting back Find the difference Part whole model Make 10 Use of base 10	Column method with regrouping. (up to 3 digits using place value counters)	Column method with regrouping. (up to 4 digits)	Column method with regrouping. Abstract for whole numbers. Start with place value counters for decimals- with the same amount of decimal places.	Column method with regrouping. Abstract methods. Place value counters for decimals- with different amounts of decimal places.

	Recognising and making equal groups. Doubling Counting in multiples Use cubes, Numicon and other objects in the classroom	Arrays- showing commutative multiplication	Arrays $2 d \times 1 d$ using base 10	Column multiplicationintroduced with place value counters. (2 and 3 digit multiplied by 1 digit)	Column multiplication Abstract only but might need a repeat of year 4 first(up to 4 digit numbers multiplied by 1 or 2 digits)	Column multiplication Abstract methods (multi-digit up to 4 digits by a 2 digit number)
$\frac{\stackrel{C}{\circ}}{\frac{1}{2}}$	Sharing objects into groups Division as grouping e.g. I have 12 sweets and put them in groups of 3 , how many groups? Use cubes and draw round 3 cubes at a time.	Division as grouping Division within arrays- linking to multiplication Repeated subtraction	Division with a remainder-using lollipop sticks, times tables facts and repeated subtraction. 2d divided by 1d using base 10 or place value counters	Division with a remainder Short division (up to 3 digits by 1 digitconcrete and pictorial)	Short division (up to 4 digits by a 1 digit number including remainders)	Short division Long division with place value counters (up to 4 digits by a 2 digit number) Children should exchange into the tenths and hundredths column too

