Benwick Primary School Calculation Policy

This document sets out the progression of teaching and learning for our children for addition, subtraction, multiplication and division. This policy supports the White Rose maths scheme used throughout the school. Progression within each area of calculation is in line with the programme of study in the 2014 National Curriculum.

This calculation policy should be used to support children to develop a deep understanding of number and calculation. This policy has been designed to teach children through the use of concrete, pictorial and abstract representations.

- **Concrete representation** a pupil is first introduced to an idea or skill by acting it out with real objects. This is a 'hands on' component using real objects and is a foundation for conceptual understanding.
- **Pictorial representation** a pupil has sufficiently understood the 'hands on' experiences performed and can now relate them to representations, such as a diagram or picture of the problem.
- Abstract representation—a pupil is now capable of representing problems by using mathematical notation, for example 12 x 2 = 24. It is important that conceptual understanding, supported by the use of representation, is secure for all procedures.

Calculations are taught and practised in lessons; reinforcement is achieved by revisiting the concrete, pictorial and abstract frequently through our Daily Calculations and our Maths lessons.

Calculation policy: Addition

Key language: sum, total, parts and wholes, plus, add, altogether, more, 'is equal to' 'is the same as'.

Concrete	Pictorial	Abstract
Combining two parts to make a whole (use other resources too e.g. eggs, shells, teddy bears, cars).	Children to represent the cubes using dots or crosses. They could put each part on a part whole model too.	4 + 3 = 7 Four is a part, 3 is a part and the whole is seven.
Counting on using number lines using cubes or Numicon.	A bar model which encourages the children to count on, rather than count all.	The abstract number line: What is 2 more than 4? What is the sum of 2 and 4? What is the total of 4 and 2? 4 + 2

Regrouping to make 10; using ten frames and counters/cubes or using Numicon. 6 + 5	Children to draw the ten frame and counters/cubes.	Children to develop an understanding of equality e.g. $6 + \Box = 11$ $6 + 5 = 5 + \Box$ $6 + 5 = \Box + 4$
TO + O using base 10. Continue to develop understanding of partitioning and place value. 41 + 8	Children to represent the base 10 e.g. lines for tens and dot/crosses for ones.	$41+8 = 9 \\ 40+9=49 \\ 40 + 9 = 40 \\ 40 + 9 = 40 \\ 40 + 10 \\ 40 + 10 \\ 40 + 10 \\ 40 + 10 \\ 40 + 10 \\ 40 + 10 \\ 40 $
TO + TO using base 10. Continue to develop understanding of partitioning and place value. 36 + 25	Chidlren to represent the base 10 in a place value chart. $ \begin{array}{c c} 10s & 1s \\ \hline 111 & \hline 6 & 1 \end{array} $	Looking for ways to make 10. 36 + 25 = 30 + 20 = 50 5 + 5 = 10 50 + 10 + 1 = 61 1 5 36 Formal method: $\frac{+25}{61}$ 1

Calculation policy: Subtraction

Key language: take away, less than, the difference, subtract, minus, fewer, decrease.

Concrete	Pictorial	Abstract
Physically taking away and removing objects from a whole (ten frames, Numicon, cubes and other items such as beanbags could be used).	Children to draw the concrete resources they are using and cross out the correct amount. The bar model can also be used.	4-3=
4 - 3 = 1	XXXX XXX	4 3?
 Counting back (using number lines or number tracks) children start with 6 and count back 2. 6 - 2 = 4 	Children to represent what they see pictorially e.g.	Children to represent the calculation on a number line or number track and show their jumps. Encourage children to use an empty number line
1 2 3 4 5 6 7 8 9 10	12345678910	012345678910
		46

Finding the difference (using cubes, Numicon or Cuisenaire rods, other objects can also be used). Calculate the difference between 8 and 5.	Children to draw the cubes/other concrete objects which they have used or use the bar model to illustrate what they need to calculate.	Find the difference between 8 and 5. 8 – 5, the difference is Children to explore why 9 - 6 = 8 – 5 = 7 – 4 have the same difference.	
Making 10 using ten frames. 14 - 5 -4 - 1 -4 - 1 -4 - 1 -4 - 1	Children to present the ten frame pictorially and discuss what they did to make 10.	Children to show how they can make 10 by partitioning the subtrahend. $14 - 5 = 9$ $4 \qquad 1$ $14 - 4 = 10$ $10 - 1 = 9$	
Column method using base 10. 48-7 10s 1s 48-7 4 4 4 1	Children to represent the base 10 pictorially.	Column method or children could count back 7. 4 8 - 7 4 1	

Calculation policy: Multiplication

Key language: double, times, multiplied by, the product of, groups of, lots of, equal groups.

Concrete	Pictorial	Abstract
Repeated grouping/repeated addition 3×4 4 + 4 + 4 There are 3 equal groups, with 4 in each group. intermation i	Children to represent the practical resources in a picture and use a bar model.	3 × 4 = 12 4 + 4 + 4 = 12
Number lines to show repeated groups- 3 × 4	Represent this pictorially alongside a number line e.g.:	Abstract number line showing three jumps of four. 3 × 4 = 12
Cuisenaire rods can be used too.	1000010000100001 0 4 8 12	0 4 8 12

Use arrays to illustrate commutativity counters and other objects can also be used. $2 \times 5 = 5 \times 2$ 2 lots of 5 5 lots of 2	Children to represent the arrays pictorially.	Children to be able to use an array to write a range of calculations e.g. $10 = 2 \times 5$ $5 \times 2 = 10$ $2 + 2 + 2 + 2 + 2 = 10$ $10 = 5 + 5$
Partition to multiply using Numicon, base 10 or Cuisenaire rods. 4×15	Children to represent the concrete manipulatives pictorially. $ \begin{array}{c c} \hline 0 & 1 \\ \hline 0 & 1 \\ \hline 0 & 1 \\ \hline 0 & 0 \\ \hline 0 & 0 \\ \hline \end{array} $	Children to be encouraged to show the steps they have taken. 4×15 10 5 $10 \times 4 = 40$ $5 \times 4 = 20$ 40 + 20 = 60 A number line can also be used 40 + 10 + 10 + 10 + 10 + 10 + 10 + 10 +
Formal column method with place value counters (base 10 can also be used.) 3 × 23	Children to represent the counters pictorially. 10s 1s 00 000 00 000 00 000 6 9	Children to record what it is they are doing to show understanding. 3×23 $3 \times 20 = 60$ $/ \ 3 \times 3 = 9$ $20 \ 3 \ 60 + 9 = 69$ 23 $\times 3$ <u>69</u>

Formal column method with place value counters. 6 x 23 100s 1s 100s 10s 1s 10s 1s 1s	e.g. the image below.	he counters/base 10, pictorially	Formal written method $6 \times 23 =$ 23 $\times 6$ 138 1 1 1×4 $\times 26$ -7×4 2×6 -7×4 2×6 -7×4 2×4 2×6 -7×4 $3 \times 2 \times 4$ -7×4 $3 \times 2 \times 4$ -7×4
23 23 23 23 23 a week. How many l one week? ?	wim 23 lengths, 6 times engths did she swim in	/s to ask childr Find the product of 6 and 23 $6 \times 23 =$ 6×23 6×23 6×23 6×23 6×23 6×23 5×23 6×23 $\times 23 \times 6$ 	Image: Second system Image: Second system Image: Second

Calculation policy: Division

Key language: share, group, divide, divided by, half.

Short division using place value counters to group. 615 ÷ 5

1. Make 615 with place value counters.

2. How many groups of 5 hundreds can you make with 6 hundred counters?

3. Exchange 1 hundred for 10 tens.

4. How many groups of 5 tens can you make with 11 ten counters?

5. Exchange 1 ten for 10 ones.

6. How many groups of 5 ones can you make with 15 ones?

Long division using place value counters 2544 ÷ 12

Represent the place value counters pictorially.

Children to the calculation using the short division scaffold.

<u>123</u> 5⁶1¹5

1000s	100s 10s	1s	After exchanging the hundred, we 12 2544 have 14 tens. We can group 12 tens 24 into a group of 12, which leaves 2 tens. 14 12 2544241412 2544241412 25441412 25441412 25441412 25441412 25441412 25441412 254414 12 254414 12 254414 12 254414 12 2544
1000s	100s 10s		After exchanging the 2 tens, we 12 2544 have 24 ones. We can group 24 ones 24 into 2 group of 12, which leaves no remainder. 14 22 24 24 24 24 0

Conceptual variation; different ways to ask children to solve $615 \div 5$

Using the part whole model below, how can you divide 615 by 5 without using short division?	I have £615 and share it equally between 5 bank accounts. How much will be in each account?	5 615	What is the cald What is the ans		
615 500 100 15	615 pupils need to be put into 5 groups. How many will be in each group?	615 ÷ 5 = = 615 ÷ 5	100s	10s	1s 00000 00000 00000

Calculation policy: Guidance

	EYFS/Year 1	Year 2	Year 3	Year 4	Year 5	Year 6
	Combining two parts to make a whole: part whole model.	Adding three single digits.	Column method- regrouping.	Column method- regrouping.	Column method- regrouping.	Column method- regrouping.
Addition	Starting at the bigger number and counting on- using cubes. Regrouping to make 10 using ten frame.	Use of base 10 to combine two numbers.	Using place value counters (up to 3 digits).	(up to 4 digits)	Use of place value counters for adding decimals.	Abstract methods. Place value counters to be used for adding decimal numbers.
	Taking away ones Counting back	Counting back Find the difference	Column method with regrouping.	Column method with regrouping.	Column method with regrouping.	Column method with regrouping.
Subtraction	Find the difference Part whole model Make 10 using the ten frame	Part whole model Make 10 Use of base 10	(up to 3 digits using place value counters)	(up to 4 digits)	Abstract for whole numbers. Start with place value counters for decimals- with the same amount of decimal places.	Abstract methods. Place value counters for decimals- with different amounts of decimal places.

Multiplication	Recognising and making equal groups. Doubling Counting in multiples Use cubes, Numicon and other objects in the classroom	Arrays- showing commutative multiplication	Arrays 2d × 1d using base 10	Column multiplication- introduced with place value counters. (2 and 3 digit multiplied by 1 digit)	Column multiplication Abstract only but might need a repeat of year 4 first(up to 4 digit numbers multiplied by 1 or 2 digits)	Column multiplication Abstract methods (multi-digit up to 4 digits by a 2 digit number)
Division	Sharing objects into groups Division as grouping e.g. I have 12 sweets and put them in groups of 3, how many groups? Use cubes and draw round 3 cubes at a time.	Division as grouping Division within arrays- linking to multiplication Repeated subtraction	Division with a remainder-using lollipop sticks, times tables facts and repeated subtraction. 2d divided by 1d using base 10 or place value counters	Division with a remainder Short division (up to 3 digits by 1 digit- concrete and pictorial)	Short division (up to 4 digits by a 1 digit number including remainders)	Short division Long division with place value counters (up to 4 digits by a 2 digit number) Children should exchange into the tenths and hundredths column too